Es en los años 50 cuando se logra realizar un sistema que tuvo cierto éxito, se llamó el Perceptrón de Rossenblatt. Éste era un sistema visual de reconocimiento de patrones en el cual se aunaron esfuerzos para que se pudieran resolver una gama amplia de problemas, pero estas energías se diluyeron enseguida.
Fué en los años 60 cuando Alan Newell y Herbert Simon, que trabajando la demostración de teoremas y el ajedrez por ordenador logran crear un programa llamado GPS (General Problem Solver: solucionador general de problemas). Éste era una sistema en el que el usuario definía un entorno en función de una serie de objetos y los operadores que se podían aplicar sobre ellos. Este programa era capaz de trabajar con las torres de Hanoi, así como con criptoaritmética y otros problemas similares, operando, claro está, con microcosmos formalizados que representaban los parámetros dentro de los cuales se podían resolver problemas. Lo que no podía hacer el GPS era resolver problemas ni del mundo real, ni médicos ni tomar decisiones importantes. El GPS manejaba reglas heurísticas (aprender a partir de sus propios descubrimientos) que la conducían hasta el destino deseado mediante el método del ensayo y el error.
Fué en los años 60 cuando Alan Newell y Herbert Simon, que trabajando la demostración de teoremas y el ajedrez por ordenador logran crear un programa llamado GPS (General Problem Solver: solucionador general de problemas). Éste era una sistema en el que el usuario definía un entorno en función de una serie de objetos y los operadores que se podían aplicar sobre ellos. Este programa era capaz de trabajar con las torres de Hanoi, así como con criptoaritmética y otros problemas similares, operando, claro está, con microcosmos formalizados que representaban los parámetros dentro de los cuales se podían resolver problemas. Lo que no podía hacer el GPS era resolver problemas ni del mundo real, ni médicos ni tomar decisiones importantes. El GPS manejaba reglas heurísticas (aprender a partir de sus propios descubrimientos) que la conducían hasta el destino deseado mediante el método del ensayo y el error.
En los años 70, un equipo de investigadores dirigido por Edward Feigenbaum comenzó a elaborar un proyecto para resolver problemas de la vida cotidiana o que se centrara, al menos, en problemas más concretos. Así es como nació el sistema experto.
El primer sistema experto fue el denominado Dendral, un intérprete de espectrograma de masa construido en 1967, pero el más influyente resultaría ser el Mycin de 1974. El Mycin era capaz de diagnosticar trastornos en la sangre y recetar la correspondiente medicación, todo un logro en aquella época que incluso fueron utilizados en hospitales (como el Puff, variante de Mycin de uso común en el Pacific Medical Center de San Francisco, EEUU).
Ya en los años 80, se desarrollaron lenguajes especiales para utilizar con la Inteligencia Artificial, tales como el LISP o el PROLOG. Es en esta época cuando se desarrollan sistemas expertos más refinados, como por el ejemplo el EURISKO. Este programa perfecciona su propio cuerpo de reglas heurísticas automáticamente, por inducción.
El primer sistema experto fue el denominado Dendral, un intérprete de espectrograma de masa construido en 1967, pero el más influyente resultaría ser el Mycin de 1974. El Mycin era capaz de diagnosticar trastornos en la sangre y recetar la correspondiente medicación, todo un logro en aquella época que incluso fueron utilizados en hospitales (como el Puff, variante de Mycin de uso común en el Pacific Medical Center de San Francisco, EEUU).
Ya en los años 80, se desarrollaron lenguajes especiales para utilizar con la Inteligencia Artificial, tales como el LISP o el PROLOG. Es en esta época cuando se desarrollan sistemas expertos más refinados, como por el ejemplo el EURISKO. Este programa perfecciona su propio cuerpo de reglas heurísticas automáticamente, por inducción.
Definición de Inteligencia Artificial
La inteligencia artificial estudia como lograr que las máquinas realicen tareas que, por el momento, son realizadas mejor por los seres humanos. La definición es efímera porque hace referencia al estado actual de la informática. No incluye áreas que potencialmente tienen un gran impacto tales como aquellos problemas que no pueden ser resueltos adecuadamente ni por los seres humanos ni por las máquinas.
Al principio se hizo hincapié en las tareas formales como juegos y demostración de teoremas, juegos como las damas y el ajedrez demostraron interés. La geometría fue otro punto de interés y se hizo un demostrador llamado: El demostrador de Galenter. Sin embargo la IA pronto se centró en problemas que aparecen a diario denominados de sentido común (commonsense reasoning). lenguaje natural. No obstante el éxito que ha tenido la IA se basa en la creación de los sistemas expertos, y de hecho áreas en donde se debe tener alto conocimiento de alguna disciplina se han dominado no así las de sentido común.
La inteligencia artificial estudia como lograr que las máquinas realicen tareas que, por el momento, son realizadas mejor por los seres humanos. La definición es efímera porque hace referencia al estado actual de la informática. No incluye áreas que potencialmente tienen un gran impacto tales como aquellos problemas que no pueden ser resueltos adecuadamente ni por los seres humanos ni por las máquinas.
Al principio se hizo hincapié en las tareas formales como juegos y demostración de teoremas, juegos como las damas y el ajedrez demostraron interés. La geometría fue otro punto de interés y se hizo un demostrador llamado: El demostrador de Galenter. Sin embargo la IA pronto se centró en problemas que aparecen a diario denominados de sentido común (commonsense reasoning). lenguaje natural. No obstante el éxito que ha tenido la IA se basa en la creación de los sistemas expertos, y de hecho áreas en donde se debe tener alto conocimiento de alguna disciplina se han dominado no así las de sentido común.
Se enfocaron los estudios hacia un problema muy importante denominado Comprensión del
Aplicaciones de la IA:
Tareas de la vida diaria:
Tareas de la vida diaria:
· Percepción
· Visión
· Habla
· Lenguaje natural
· Comprensión
· Generación
· Traducción
· Sentido común
· Control de un robot
Tareas formales:
· Juegos
· Ajedrez
· Backgammon
· Damas
· Go
· Matemáticas
· Geometría
· Lógica
· Cálculo Integral
· Demostración de las propiedades de los programas
Tareas de los expertos:
· Ingeniería
· Diseño
· Detección de fallos
· Planificación de manufacturación
· Análisis científico
· Diagnosis médica
· Análisis financiero
La evolución de la I.A. se debe al desarrollo de programas para ordenadores capaces de traducir de un idioma a otro, juegos de ajedrez, resolución de teoremas matemáticos, etc. Alrededor de 1950, Alan Turing desarrolló un método para saber si una máquina era o no "inteligente" denominado "Testde Turing", "en el cual un operador tiene que mantener una conversación en dos sentidos con otra entidad, a través de un teclado, e intentar que la otra parte le diga si se trata de una máquina o de otro ser humano.
Sobre este test circulan muchas historias ficticias, pero nuestra favorita es la que trata sobre una persona que buscaba trabajo y al que se le deja delante de un teclado para que se desenvuelva solo. Naturalmente, se da cuenta de la importancia de este test para sus perspectivas de carrera y por lo tanto lucha valientemente para encontrar el secreto, aparentemente sin éxito.
Sobre este test circulan muchas historias ficticias, pero nuestra favorita es la que trata sobre una persona que buscaba trabajo y al que se le deja delante de un teclado para que se desenvuelva solo. Naturalmente, se da cuenta de la importancia de este test para sus perspectivas de carrera y por lo tanto lucha valientemente para encontrar el secreto, aparentemente sin éxito.
Pero de que sirve crear algoritmos capaces de imitar la inteligencia y el razonamiento humano; es aquí donde la I. A. y la Robótica tienen un punto en común.
La I.A. tiene aplicación en la Robótica cuando se requiere que un robot "piense" y tome una decisión entre dos o mas opciones, es entonces cuando principalmente ambas ciencias comparten algo en común. La I.A. también se aplica a los ordenadores, ya sean PC’s , servidores de red o terminales de red, ya que su principal aplicación es desarrollar programas computacionales que resuelvan problemas que implican la interacción entre la máquina y el hombre, es decir, las máquinas "aprenderán" de los hombres, para realizar mejor su labor.
La I.A. tiene aplicación en la Robótica cuando se requiere que un robot "piense" y tome una decisión entre dos o mas opciones, es entonces cuando principalmente ambas ciencias comparten algo en común. La I.A. también se aplica a los ordenadores, ya sean PC’s , servidores de red o terminales de red, ya que su principal aplicación es desarrollar programas computacionales que resuelvan problemas que implican la interacción entre la máquina y el hombre, es decir, las máquinas "aprenderán" de los hombres, para realizar mejor su labor.
Técnica de Inteligencia Artificial:
Uno de los más rápidos y sólidos resultados que surgieron en las tres primeras décadas de las investigaciones de la IA fue que la Inteligencia necesita conocimiento.
Para compensar este logro imprescindiblemente el conocimiento poseé algunas propiedades poco deseables como:
Uno de los más rápidos y sólidos resultados que surgieron en las tres primeras décadas de las investigaciones de la IA fue que la Inteligencia necesita conocimiento.
Para compensar este logro imprescindiblemente el conocimiento poseé algunas propiedades poco deseables como:
· Es voluminoso
· Es difícil caracterizarlo con exactitud
· Cambia constantemente
· Se distingue de los datos en que se organiza de tal forma que se corresponde con la forma en que va a ser usado.
Con los puntos anteriores se concluye que una técnica de IA es un método que utiliza conocimiento representado de tal forma que:
· El conocimiento represente las generalizaciones En otras palabras no es necesario representar de forma separada cada situación individual. En lugar de esto se agrupan las situaciones que comparten propiedades importantes. Si el conocimiento no posee esta propiedad, puede necesitarse demasiada memoria.
Si no se cumple esta propiedad es mejor hablar de "datos" que de conocimiento.
· Debe ser comprendido por las personas que lo proporcionan. Aunque en muchos programas, los datos pueden adquirirse automáticamente (por ejemplo, mediante lectura de instrumentos), en muchos dominios de la IA, la mayor parte del conocimiento que se suministra a los programas lo proporcionan personas haciéndolo siempre en términos que ellos comprenden.
· Puede modificarse fácilmente para corregir errores y reflejar los cambios en el mundo y en nuestra visión del mundo.
· Puede usarse en gran cantidad de situaciones aún cuando no sea totalmente preciso o completo.
· Puede usarse para ayudar a superar su propio volumen, ayudando a acotar el rango de posibilidades que normalmente deben ser consideradas.
Es posible resolver problemas de IA sin utilizar Técnicas de IA (si bien estas soluciones no suelen ser muy adecuadas). También es posible aplicar técnicas de IA para resolver problemas ajenos a la IA. Esto parece ser adecuado para aquellos problemas que tengan muchas de las características de los problemas de IA.
Los problemas al irse resolviendo tienen entre las características de su solución:
Los problemas al irse resolviendo tienen entre las características de su solución:
· Complejidad
· El uso de generalizaciones
· La claridad de su conocimiento
· La facilidad de su extensión
La robotica
El término robótica procede de la palabra robot. La robótica es, por lo tanto, la ciencia o rama de la ciencia que se ocupa del estudio, desarrollo y aplicaciones de los robots.
Otra definición de robótica es el diseño, fabricación y utilización de máquinas automáticas programables con el fin de realizar tareas repetitivas como el ensamble de automóviles, aparatos, etc. y otras actividades. Básicamente, la robótica se ocupa de todo lo concerniente a los robots, lo cual incluye elcontrol de motores, mecanismos automáticos neumáticos, sensores, sistemas de cómputos, etc.
En la robótica se aúnan para un mismo fin varias disciplinas confluyentes, pero diferentes, como la Mecánica, la Electrónica, la Automática, laInformática, etc.
El término robótica se le atribuye a Isaac Asimov.
Los tres principios o leyes de la robótica según Asimov son:
Otra definición de robótica es el diseño, fabricación y utilización de máquinas automáticas programables con el fin de realizar tareas repetitivas como el ensamble de automóviles, aparatos, etc. y otras actividades. Básicamente, la robótica se ocupa de todo lo concerniente a los robots, lo cual incluye elcontrol de motores, mecanismos automáticos neumáticos, sensores, sistemas de cómputos, etc.
En la robótica se aúnan para un mismo fin varias disciplinas confluyentes, pero diferentes, como la Mecánica, la Electrónica, la Automática, laInformática, etc.
El término robótica se le atribuye a Isaac Asimov.
Los tres principios o leyes de la robótica según Asimov son:
· Un robot no puede lastimar ni permitir que sea lastimado ningún ser humano.
· El robot debe obedecer a todas las órdenes de los humanos, excepto las que contraigan la primera ley.
· El robot debe autoprotegerse, salvo que para hacerlo entre en conflicto con la primera o segunda ley.
Robots:
Los robots son dispositivos compuestos de sensores que reciben datos de entrada y que pueden estar conectados a la computadora. Esta, al recibir lainformación de entrada, ordena al robot que efectúe una determinada acción. Puede ser que los propios robots dispongan de microprocesadores que reciben el input de los sensores y que estos microprocesadores ordenen al robot la ejecución de las acciones para las cuales está concebido. En este último caso, el propio robot es a su vez una computadora.
Los robots son dispositivos compuestos de sensores que reciben datos de entrada y que pueden estar conectados a la computadora. Esta, al recibir lainformación de entrada, ordena al robot que efectúe una determinada acción. Puede ser que los propios robots dispongan de microprocesadores que reciben el input de los sensores y que estos microprocesadores ordenen al robot la ejecución de las acciones para las cuales está concebido. En este último caso, el propio robot es a su vez una computadora.
"puedo concluir que la robótica y la inteligencia artificial van tomadas de la mano ya que la una se encarga de la parte mecánica, y la otra de la parte analítica.
La robótica es el diseño, fabricación y utilización de máquinas automáticas programables con el fin de realizar tareas repetitivas como el ensamble de automóviles, aparatos, etc. y otras actividades, por ello pienso que la robótica es la parte mecánica de una tecnología, en cambio creo que la inteligencia artificial es la parte analítica o la parte que determina la acción de los robots, ya que los robots no podrían realizar ninguna tarea sin que se les indicara u ordenara la tarea, por ello, aquí es donde entra la inteligencia artificial.
Gracias a la inteligencia artificial se ha logrado que una maquina sea capaz de desarrollar áreas de conocimiento muy especificas y complicadas, haciendo que la maquina pueda simular procesos que el hombre realiza. Pero cabe destacar que aún no se ha logrado que una máquina piense como un humano, pienso que una limitación es el hecho de que el hombre es irremplazable ya que el ser humano cuenta con una característica propia el cual es el sentido común.
Pero no podemos olvidar que el desarrollo de estas tecnologías no pretenden reemplazar al ser humano sino que tratan de mejorar el estilo de vida del ser humano, ya que recordemos que, por lo menos los robots hacen que el trabajo pesado sea mas facil de realizar, y que una maquina no se enferma, ni protestas, ni se cansa y esto puede elevar su utilidad. En fin esperemos que estas tecnologías no se nos vaya de las manos, y que no nos perjudique, sino que nos ayude."
Pero no podemos olvidar que el desarrollo de estas tecnologías no pretenden reemplazar al ser humano sino que tratan de mejorar el estilo de vida del ser humano, ya que recordemos que, por lo menos los robots hacen que el trabajo pesado sea mas facil de realizar, y que una maquina no se enferma, ni protestas, ni se cansa y esto puede elevar su utilidad. En fin esperemos que estas tecnologías no se nos vaya de las manos, y que no nos perjudique, sino que nos ayude."